q-Bernstein polynomials and their iterates

Sofiya Ostrovska*
Department of Mathematics, Atilim University, 06836 Incek, Ankara, Turkey
Received 11 July 2002; accepted in revised form 12 May 2003
Communicated by Dany Leviatan

Abstract

Let $B_{n}(f, q ; x), n=1,2, \ldots$ be q-Bernstein polynomials of a function $f:[0,1] \rightarrow \mathbf{C}$. The polynomials $B_{n}(f, 1 ; x)$ are classical Bernstein polynomials. For $q \neq 1$ the properties of q Bernstein polynomials differ essentially from those in the classical case. This paper deals with approximating properties of q-Bernstein polynomials in the case $q>1$ with respect to both n and q. Some estimates on the rate of convergence are given. In particular, it is proved that for a function f analytic in $\{z:|z|<q+\varepsilon\}$ the rate of convergence of $\left\{B_{n}(f, q ; x)\right\}$ to $f(x)$ in the norm of $C[0,1]$ has the order q^{-n} (versus $1 / n$ for the classical Bernstein polynomials). Also iterates of q-Bernstein polynomials $\left\{B_{n}^{j_{n}}(f, q ; x)\right\}$, where both $n \rightarrow \infty$ and $j_{n} \rightarrow \infty$, are studied. It is shown that for $q \in(0,1)$ the asymptotic behavior of such iterates is quite different from the classical case. In particular, the limit does not depend on the rate of $j_{n} \rightarrow \infty$.

(C) 2003 Elsevier Science (USA). All rights reserved.

Keywords: q-Bernstein polynomials; q-Integers; q-Binomial coefficients; Convergence; Iterates

1. Introduction

In 1912 Bernstein [2] found his famous proof of the Weierstrass Approximation Theorem. Using probability theory he defined polynomials called nowadays Bernstein polynomials as follows.

Definition (Bernstein [2]). Let $f:[0,1] \rightarrow \mathbf{R}$. The Bernstein polynomial of f is

$$
B_{n}(f ; x):=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}, \quad n=1,2, \ldots .
$$

[^0]Bernstein proved that if $f \in C[0,1]$, then the sequence $\left\{B_{n}(f ; x)\right\}$ converges uniformly to $f(x)$ on $[0,1]$.

Later it was found that Bernstein polynomials possess many remarkable properties, which made them an area of intensive research. A systematic treatment of the theory of Bernstein polynomials as it was until 1990s is presented, for example, in $[8,19]$. New papers are constantly coming out (cf. e.g. [3]), and new applications and generalizations are being discovered (cf. e.g. [7,13]). A generalization of Bernstein polynomials involving q-integers was proposed by Lupaş in 1987 (cf. [9]). However, the q-analogue of the Bernstein operator considered by Lupaş gives rational functions rather than polynomials.

Generalized Bernstein polynomials based on the q-integers, or q-Bernstein polynomials were introduced by Phillips in 1997. In the case $q=1$ these polynomials coincide with the classical ones. For $q \neq 1$ one gets a new class of polynomials having interesting properties. q-Bernstein polynomials have been studied by Phillips et al. ($[4,11,12,14-17]$), who obtained a great number of results related to various properties of these polynomials.

It should be mentioned that results of these papers deal mostly with the case $q \in(0,1)$. This is because in this case q-Bernstein polynomials generate positive linear operators $B_{n, q}: f \mapsto B_{n}(f, q ; x)$; the fact that is used in investigation significantly. The case $q \in(1, \infty)$, where positivity fails, has not been studied in detail. However, the results of this paper show that in this case approximating properties of q-Bernstein polynomials may be better than in the case $q \leqslant 1$.

In Sections 3 and 4, we discuss convergence properties of q-Bernstein polynomials with respect to both n and q in the case $q>1$.

In Sections 5 and 6, we study the rate of approximation of analytic functions by q Bernstein polynomials in the case $q>1$. In particular, for entire functions the rate of convergence has the order $q^{-n}(q>1)$ versus $1 / n$ for the classical polynomials. We also discuss approximation by q-Bernstein polynomials in case the value of parameter q varies.

It should be emphasized that the results of the paper are the first ones showing that approximation properties of q-Bernstein polynomials can be better than of the classical ones.

Sections 7-9 are dedicated to iterates of the q-Bernstein operator. By the definition the k th iterate of $B_{n, q}$ is

$$
B_{n, q}^{1}:=B_{n, q}, \quad B_{n, q}^{k}:=B_{n, q}\left(B_{n, q}^{k-1}\right), \quad k=2,3, \ldots
$$

Iterates of the classical Bernstein operator $B_{n}:=B_{n, 1}$ have been studied in many papers starting from [6]. In [6], Kelisky and Rivlin studied the convergence of the iterates $B_{n}^{k}(f)$ as $k \rightarrow \infty$ if n is fixed, and of the iterates $B_{n}^{j_{n}}(p)$ as $n \rightarrow \infty$, where p is a polynomial and $\left\{j_{n} / n\right\} \rightarrow \alpha, 0 \leqslant \alpha \leqslant \infty$. They proved that in both cases the iterates are convergent, and found an explicit formula of the limit function. From a different point of view the iterates of the Bernstein operator were studied by Micchelli [10], who considered them using semigroup methods. Recently, Cooper and Waldron [3]
investigated iterates of the Bernstein operator using properties of eigenvalues and eigenvectors of the operator. In [3] one can also find other references on the subject.

Iterates of the q-Bernstein operator $B_{n, q}^{k}$ with fixed n and $k \rightarrow \infty$ were considered in [12], where it was proved that these iterates have the same behavior as in the classical case $q=1$.

In this paper we consider iterates of the q-Bernstein operator of the form $B_{n, q}^{j_{n}}$, where both n and j_{n} tend to infinity. We consider in detail the behavior of iterates of the q-Bernstein operator for $q \in(0,1)$. Our results show that in this case the behavior of iterates is essentially different from the classical case $q=1$ considered by Kelisky and Rivlin [6, Theorem 2]. In particular, the limit does not depend on the rate of $j_{n} \rightarrow \infty$ (cf. Theorem 8). For $q \in(1, \infty)$ the situation is very similar to the classical case. Corresponding results and their proofs can be obtained by almost verbatim extension of reasoning given in [3, Theorems 4.1, 4.20, Corollary 5.15]. Therefore, we present them without proofs.

To formulate our results we need the following definitions.
Let $q>0$. For any $n=0,1,2, \ldots$ the q-integer $[n]_{q}$ is defined by

$$
[n]_{q}:=1+q+\cdots+q^{n-1}(n=1,2, \ldots),[0]_{q}:=0
$$

and the q-factorial $[n]_{q}$! by

$$
[n]_{q}!:=[1]_{q}[2]_{q} \ldots[n]_{q}(n=1,2, \ldots),[0]_{q}!:=1
$$

For integers $0 \leqslant k \leqslant n$ the q-binomial, or the Gaussian coefficient is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

Clearly, for $q=1$,

$$
[n]_{1}=n, \quad[n]_{1}!=n!, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{1}=\binom{n}{k}
$$

In the sequel we always assume that $f:[0,1] \rightarrow \mathbf{C}$. We denote by $C[0,1]$ (or $C^{n}[0,1], 1 \leqslant n \leqslant \infty$) the space of all continuous (correspondingly, n times continuously differentiable) complex-valued functions on [0,1] equipped with the uniform norm. The expression $g_{n}(x) \rightrightarrows g(x)$ means uniform convergence of a sequence $\left\{g_{n}(x)\right\}$ to $g(x)$.

Definition (Phillips [14]). Let $f:[0,1] \rightarrow \mathbf{C}, q>0$. The q-Bernstein polynomial of f is

$$
B_{n}(f, q ; x):=\sum_{k=0}^{n} f\left(\frac{[k]_{q}}{[n]_{q}}\right)\left[\begin{array}{l}
n \tag{1}\\
k
\end{array}\right]_{q} x^{k} \prod_{s=0}^{n-1-k}\left(1-q^{s} x\right), \quad n=1,2, \ldots
$$

(From here on an empty product is taken to be equal 1.)
Note that for $q=1$, the polynomials $B_{n}(f, 1 ; x)$ are classical Bernstein polynomials. Recall that the famous theorem of Bernstein states:

Theorem (Bernstein [2]). If $f \in C[0,1]$, then

$$
B_{n}(f, 1 ; x) \rightrightarrows f(x) \quad \text { for } x \in[0,1] \text { as } n \rightarrow \infty
$$

For $q \in(0,1)$ convergence of the sequence $\left\{B_{n}(f, q ; x)\right\}$ was investigated in [5].
Theorem (Il'inskii and Ostrovska [5]). Given $q \in(0,1)$ and $f \in C[0,1]$, there exists a continuous function $B_{\infty}(f, q ; x)$ such that

$$
\begin{equation*}
B_{n}(f, q ; x) \rightrightarrows B_{\infty}(f, q ; x) \quad \text { for } x \in[0,1] \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

An explicit formula for $B_{\infty}(f, q ; x)$ is given by (16). It follows from (16) that the equality $B_{\infty}(f, q ; x)=f(x)$ holds if and only if $f(x)=a x+b$, i.e. $f(x)$ is a linear function.

Therefore, in the case $q \in(0,1)$ the sequence $\left\{B_{n}(f, q ; x)\right\}$ is not an approximating sequence for a function f unless f is linear. This is in contrast to the case $q=1$, when the sequence $\left\{B_{n}(f, 1 ; x)\right\}$ approximates f for any $f \in C[0,1]$.

In this paper we show that in the case $q>1$ approximating properties of the sequence $\left\{B_{n}(f, q ; x)\right\}$ are in some sense intermediate between the cases mentioned above. We prove that for $q>1$ the sequence $\left\{B_{n}(f, q ; x)\right\}$ is approximating for functions analytic in a suitable domain, and, moreover, we may achieve a fast rate of convergence. At the same time the sequence may be divergent for some infinitely differentiable functions. We also discuss approximating properties of q-Bernstein polynomials related to the dependence on the value of q.

Equality (1) defines the linear operator

$$
B_{n, q}: f \mapsto B_{n}(f, q ; x),
$$

which is called the q-Bernstein operator. Clearly,

$$
B_{n, q}: C[0,1] \rightarrow \mathscr{P}_{n},
$$

where \mathscr{P}_{n} denotes the set of polynomials of degree $\leqslant n$. To study iterates of q Bernstein polynomials it is convenient to present them in the form of linear operators, i.e. $B_{n}^{k}(f, q, x)=B_{n, q}^{k}(f)$. In the sequel, we use polynomial and operator notation interchangeably. We prove that for $q \in(0,1)$ and any function $f \in C[0,1]$ the sequence $\left\{B_{n}^{j_{n}}(f, q, x)\right\}$, where $n \rightarrow \infty$ and $j_{n} \rightarrow \infty$, converges uniformly to the linear function interpolating f at 0 and 1 regardless the rate of $j_{n} \rightarrow \infty$.

For $q \in(0,1)$ the limit function appeared in (2) defines a linear operator on $C[0,1]$

$$
B_{\infty, q}: f \mapsto B_{\infty}(f, q ; x) .
$$

It was observed in [5] that $B_{\infty, q}(C[0,1]) \neq C[0,1]$. We also consider the behavior of the iterates of $B_{\infty, q}$.

2. Preliminaries

In this section we state some general properties of q-Bernstein polynomials which will be used throughout the paper.

It follows directly from the definition that q-Bernstein polynomials possess the end-point interpolation property, i.e.

$$
\begin{equation*}
B_{n}(f, q ; 0)=f(0), B_{n}(f, q ; 1)=f(1) \text { for all } q>0 \text { and all } n=1,2, \ldots \tag{3}
\end{equation*}
$$

The following representation of q-Bernstein polynomials, called the q-difference form, was obtained in [15, Theorem 1, formula (12)]:

$$
B_{n}(f, q ; x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{4}\\
k
\end{array}\right]_{q} \mathscr{D}^{k} f_{0} x^{k}
$$

where $\mathscr{D}^{k} f_{0}$ is expressed as

$$
\begin{equation*}
\mathscr{D}^{k} f_{0}=\frac{[k]_{q}!}{[n]_{q}^{k}} q^{k(k-1) / 2} f\left[0 ; \frac{1}{[n]_{q}} ; \cdots ; \frac{[k]_{q}}{[n]_{q}}\right] . \tag{5}
\end{equation*}
$$

By $f\left[x_{0} ; x_{1} ; \ldots ; x_{k}\right]$ we denote the usual divided difference, i.e.

$$
\begin{aligned}
& f\left[x_{0}\right]=f\left(x_{0}\right), \quad f\left[x_{0} ; x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}, \ldots, \\
& f\left[x_{0} ; x_{1} ; \ldots ; x_{j}\right]=\frac{f\left[x_{1} ; \ldots ; x_{j}\right]-f\left[x_{0} ; \ldots ; x_{j-1}\right]}{x_{j}-x_{0}}
\end{aligned}
$$

Using (4) and (5), we write

$$
\begin{equation*}
B_{n}(f, q ; x)=\sum_{k=0}^{n} \lambda_{k, q}^{(n)} f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[k]_{q}}{[n]_{q}}\right] x^{k}, \tag{6}
\end{equation*}
$$

where

$$
\lambda_{k, q}^{(n)}:=\left[\begin{array}{l}
n \tag{7}\\
k
\end{array}\right]_{q} \frac{[k]_{q}!}{[n]_{q}^{k}} q^{k(k-1) / 2}=\left(1-\frac{1}{[n]_{q}}\right) \cdots\left(1-\frac{[k-1]_{q}}{[n]_{q}}\right)
$$

In Section 8 (Lemma 5) we show that $\lambda_{k, q}^{(n)}$ are eigenvalues of the q-Bernstein operator $B_{n, q}$. Note that

$$
\begin{equation*}
\lambda_{0, q}^{(n)}=\lambda_{1, q}^{(n)}=1, \tag{8}
\end{equation*}
$$

and it is clear from (7) that

$$
\begin{equation*}
0 \leqslant \lambda_{k, q}^{(n)} \leqslant 1, \quad k=0,1, \ldots, n \tag{9}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left|B_{n}(f, q ; x)\right| \leqslant \sum_{k=0}^{n}\left|f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[k]_{q}}{[n]_{q}}\right]\right||x|^{k} . \tag{10}
\end{equation*}
$$

This estimate will be used in the sequel.
It follows immediately from (6) and (8) that q-Bernstein polynomials leave invariant linear functions, that is

$$
\begin{equation*}
B_{n}(a t+b, q ; x)=a x+b \quad \text { for all } q>0 \text { and all } n=1,2 \ldots . \tag{11}
\end{equation*}
$$

If f is a polynomial of degree m, then all its divided differences of order $>m$ vanish, and (6) implies that $B_{n}(f, q ; x)$ is a polynomial of degree $\min (m, n)$. In other words, this means that the q-Bernstein operator is degree reducing.

We set

$$
p_{n k}(q ; x):=\left[\begin{array}{l}
n \tag{12}\\
k
\end{array}\right]_{q} x^{k} \prod_{s=0}^{n-1-k}\left(1-q^{s} x\right), \quad k=0,1, \ldots, n ; n=1,2, \ldots
$$

Taking $a=0, b=1$ in (11), we conclude that

$$
\begin{equation*}
\sum_{k=0}^{n} p_{n k}(q ; x)=1 ; \quad \text { for all } q>0 \text { and all } n=1,2, \ldots \tag{13}
\end{equation*}
$$

Obviously,

$$
B_{n}(f, q ; x)=\sum_{k=0}^{n} f\left(\frac{[k]_{q}}{[n]_{q}}\right) p_{n k}(q ; x)
$$

The behavior of the sequence $\left\{B_{n}(f, q ; x)\right\}$ for $q \in(0,1)$ and $n \rightarrow \infty$ is described in [5] as follows.

Consider the entire functions

$$
\begin{equation*}
p_{\infty k}(q ; x):=\frac{x^{k}}{(1-q)^{k}[k]_{q}!} \prod_{s=0}^{\infty}\left(1-q^{s} x\right), \quad k=0,1, \ldots \tag{14}
\end{equation*}
$$

By Euler's identity (cf. [1, Chapter 2, Corollory 2.2]) we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} p_{\infty k}(q ; x)=1 \quad \text { for all } x \in[0,1) \tag{15}
\end{equation*}
$$

Clearly, for $q \in(0,1)$ we have

$$
\lim _{n \rightarrow \infty} \frac{[k]_{q}}{[n]_{q}}=1-q^{k} \quad \text { for all } k=0,1, \ldots
$$

For $f:[0,1] \rightarrow \mathbf{C}, q \in(0,1)$ we set

$$
B_{\infty}(f, q ; x)= \begin{cases}\sum_{k=0}^{\infty} f\left(1-q^{k}\right) p_{\infty k}(q ; x) & \text { if } x \in[0,1) \tag{16}\\ f(1) & \text { if } x=1\end{cases}
$$

It can be readily seen that the function $B_{\infty}(f, q ; x)$ is well defined on $[0,1]$ whenever a function $f(x)$ is bounded on the interval. We note that (16) gives the limit function defined in (2). It follows from (2) and (11) that

$$
\begin{equation*}
B_{\infty}(a t+b, q, x)=a x+b \tag{17}
\end{equation*}
$$

In the following section we investigate the behavior of the sequence $\left\{B_{n}(f, q ; x)\right\}$ in the case $q>1$.

3. Convergence of q-Bernstein polynomials in the case $q>1$

Our main result on convergence is the following theorem.
Theorem 1. Let $q \in(1, \infty)$, and let f be a function analytic in an ε-neighborhood of $[0,1]$. Then for any compact set $K \subset D_{\varepsilon}:=\{z:|z|<\varepsilon\}$,

$$
B_{n}(f, q ; z) \rightrightarrows f(z) \quad \text { for } z \in K \text { as } n \rightarrow \infty
$$

Corollary 1. If f is a function analytic in a disk $D_{R}, R>1$, then for any compact set $K \subset D_{R-1}$,

$$
B_{n}(f, q ; z) \rightrightarrows f(z) \quad \text { for } z \in K \text { as } n \rightarrow \infty
$$

In particular, if $R>2$, then $B_{n}(f, q ; x) \rightrightarrows f(x)$ for $x \in[0,1]$ as $n \rightarrow \infty$.
Corollary 2. If f is an entire function, then for any compact set $K \subset \mathbf{C}$,

$$
B_{n}(f, q ; z) \rightrightarrows f(z) \quad \text { for } z \in K \text { as } n \rightarrow \infty
$$

Remark. A particular case f being a polynomial and $K=[0,1]$ was considered in [12].

The condition of analyticity is essential for convergence, and it cannot be dropped completely as the following theorem shows.

Theorem 2. Let $q \in(1, \infty)$.
(i) There exists $f \in C^{\infty}[0,1]$ such that $\left\{B_{n}(f, q ; x)\right\}$ does not converge to any finite function on $[0,1]$.
(ii) There exists $f \in C^{\infty}[0,1]$ such that $\left\{B_{n}(f, q ; x)\right\}$ converges to a finite discontinuous function on $[0,1]$.
(iii) There exists $f \in C^{\infty}[0,1]$ such that $\left\{B_{n}(f, q ; x)\right\}$ converges uniformly on $[0,1]$ to $g(x) \neq f(x)$.

The following theorem describes the behavior of the polynomials $B_{n}(f, q ; x)$ as $q \rightarrow+\infty$ under certain smoothness conditions for f.

Theorem 3. Let $f \in C^{n-1}[0,1]$. Then for any compact set $K \subset \mathbf{C}$,

$$
B_{n}(f, q ; z) \rightrightarrows B_{n}(f, \infty ; z):=\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} z^{k}+z^{n}\left\{f(1)-\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!}\right\}
$$

for $z \in K$ as $q \rightarrow+\infty$.

Corollary 3. If f is analytic in a disk $D_{R}, R>1$, then

$$
B_{n}(f, \infty ; z) \rightrightarrows f(z) \quad \text { for }|z| \leqslant 1 \text { as } n \rightarrow \infty
$$

That is, quite unexpectedly, we get good approximating properties of the sequence $\left\{B_{n}(f, q ; x)\right\}$ taking the value of q infinite. The corollary below can be derived from Theorem 3 immediately.

Corollary 4. If p is a polynomial of degree $\leqslant n$, then

$$
B_{n}(p, \infty ; z)=p(z) .
$$

Therefore, we may approximate $p(x)$ with its q-Bernstein polynomials of the same degree n taking the limit with respect to q.

4. Proofs of Theorems 1-3

We need the following lemma, which is also of interest for its own sake.
Lemma 1. Let $q \in(1, \infty)$. If $f \in C[0,1]$, then

$$
\lim _{n \rightarrow \infty} B_{n}\left(f, q ; \frac{1}{q^{m}}\right)=f\left(\frac{1}{q^{m}}\right) \quad \text { for all } m=0,1,2, \ldots
$$

Proof. Let the polynomials $p_{n k}(q ; x)$ be defined by (12). Obviously,

$$
B_{n}(f, q ; x)=\sum_{k=0}^{n} f\left(\frac{[n-k]_{q}}{[n]_{q}}\right) p_{n, n-k}(q ; x) .
$$

We note that

$$
p_{n, n-k}\left(q ; \frac{1}{q^{m}}\right)=0 \quad \text { for } m<k \leqslant n
$$

and

$$
\begin{aligned}
p_{n, n-k}\left(q ; \frac{1}{q^{m}}\right) & =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{1}{q^{m(n-k)}}\left(1-\frac{1}{q^{m}}\right) \cdots\left(1-\frac{q^{k-1}}{q^{m}}\right) \\
& =O\left(q^{n(k-m)}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty \text { for } k<m
\end{aligned}
$$

For $k=m$ we have

$$
\lim _{n \rightarrow \infty} p_{n, n-m}\left(q ; \frac{1}{q^{m}}\right)=\lim _{n \rightarrow \infty}\left[\begin{array}{c}
n \\
n-m
\end{array}\right]_{q} \frac{1}{q^{m(n-m)}}\left(1-\frac{1}{q^{m}}\right) \cdots\left(1-\frac{1}{q}\right)=1
$$

Since $f \in C[0,1]$ and

$$
\lim _{n \rightarrow \infty} \frac{[n-m]_{q}}{[n]_{q}}=\frac{1}{q^{m}},
$$

it follows that

$$
\lim _{n \rightarrow \infty} B_{n}\left(f, q ; \frac{1}{q^{m}}\right)=\lim _{n \rightarrow \infty} f\left(\frac{[n-m]_{q}}{[n]_{q}}\right) p_{n, n-m}\left(q ; \frac{1}{q^{m}}\right)=f\left(\frac{1}{q^{m}}\right)
$$

Proof of Theorem 1. Let f be analytic in an ε-neighborhood U_{ε} of $[0,1]$. Take any compact set $K \subset D_{\varepsilon}$. Then for some $\varepsilon_{1} \in(0, \varepsilon)$ we have $|z| \leqslant \varepsilon_{1}$ for all $z \in K$.

Let us choose a contour L in U_{ε} in such a way that the distance between L and $[0,1]$ equals $\rho, 0<\varepsilon_{1}<\rho<\varepsilon$.

Since (cf. [8, Chapter II, Section 2.7])

$$
f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[k]_{q}}{[n]_{q}}\right]=\frac{1}{2 \pi i} \int_{L} \frac{f(\zeta) d \zeta}{\zeta\left(\zeta-\frac{1}{[n]_{q}}\right) \cdots\left(\zeta-\frac{[k]_{q}}{[n]_{q}}\right)}
$$

and $|\zeta-x| \geqslant \rho$ for all $\zeta \in L$ and $x \in[0,1]$, it follows that

$$
\begin{equation*}
\left|f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[k]_{q}}{[n]_{q}}\right]\right| \leqslant \frac{l}{2 \pi} \cdot \frac{M_{L}}{\rho^{k+1}}, \tag{18}
\end{equation*}
$$

where l is the length of L, and $M_{L}=\max _{\zeta \in L}|f(\zeta)|$. Substituting (18) into (10), we obtain

$$
\left|B_{n}(f, q ; z)\right| \leqslant \frac{l M_{L}}{2 \pi \rho} \sum_{k=0}^{n} \frac{|z|^{k}}{\rho^{k}} .
$$

If $z \in D_{\varepsilon_{1}}$, then $|z|<\varepsilon_{1}<\rho$, so

$$
\sum_{k=0}^{n} \frac{|z|^{k}}{\rho^{k}} \leqslant \sum_{k=0}^{n}\left(\frac{\varepsilon_{1}}{\rho}\right)^{k}<\sum_{k=0}^{\infty}\left(\frac{\varepsilon_{1}}{\rho}\right)^{k}=\frac{1}{1-\frac{\varepsilon_{1}}{\rho}},
$$

and hence the sequence $\left\{B_{n}(f, q ; z)\right\}$ is uniformly bounded in the disk $D_{\varepsilon_{1}}$. Besides, by Lemma 1 the sequence converges to the function f analytic in $D_{\varepsilon_{1}}$ on the set $\left\{1 / q^{m}\right\}_{0}^{\infty}$ having an accumulation point in $D_{\varepsilon_{1}}$. By the Vitali Theorem (cf. e.g. [18, Chapter V, Section 5.2]) the sequence converges to f on any compact set in $D_{\varepsilon_{1}}$, and thus on K.

Proof of Theorem 2. Consider the polynomials $p_{n k}(q ; x)$ defined by (12).
Specifically, we have

$$
p_{n n}(q ; x)=x^{n}
$$

and

$$
p_{n, n-1}(q ; x)=[n]_{q} x^{n-1}(1-x)=\frac{q^{n}-1}{q-1} x^{n-1}(1-x)
$$

Obviously,

$$
\lim _{n \rightarrow \infty} p_{n n}(q ; x)= \begin{cases}0 & \text { for } 0 \leqslant x<1 \\ 1 & \text { for } x=1\end{cases}
$$

and

$$
\lim _{n \rightarrow \infty} p_{n, n-1}(q ; x)= \begin{cases}0 & \text { for } 0 \leqslant x<1 / q \text { and } x=1 \tag{19}\\ 1 & \text { for } x=1 / q \\ \infty & \text { for } 1 / q<x<1\end{cases}
$$

(i) Consider a function $\varphi \in C^{\infty}[0,1]$ satisfying

$$
\varphi(x)= \begin{cases}0 & \text { for } 0 \leqslant x \leqslant 1 / q^{2} \\ 1 & \text { for } a \leqslant x \leqslant 1 / q \\ 0 & \text { for } x=1\end{cases}
$$

where $a \in\left(1 / q^{2}, 1 / q\right)$. Since

$$
\frac{[n-k]_{q}}{[n]_{q}} \uparrow \frac{1}{q^{k}} \quad \text { as } n \rightarrow \infty
$$

we obtain that

$$
\varphi\left(\frac{[n-k]_{q}}{[n]_{q}}\right)=0 \quad \text { for } k \neq 1 \text { and sufficiently large } n .
$$

Therefore

$$
B_{n}(\varphi, q ; x)=\varphi\left(\frac{[n-1]_{q}}{[n]_{q}}\right) p_{n, n-1}(q ; x)=p_{n, n-1}(q ; x)
$$

for n large enough.
Let $g(x)$ be an entire function. We set

$$
f(x):=g(x)+\varphi(x)
$$

Then $B_{n}(f, q ; x)=B_{n}(g, q ; x)+B_{n}(\varphi, q ; x)$. By Theorem $1, B_{n}(g, q ; x) \rightrightarrows g(x)$ on $[0,1]$. Hence

$$
\lim _{n \rightarrow \infty} B_{n}(f, q ; x)=g(x)+\lim _{n \rightarrow \infty} p_{n, n-1}(q ; x)
$$

By (19) the limit is infinite for $x \in(1 / q, 1)$.
(ii) In this case we take $\varphi \in C^{\infty}[0,1]$ to satisfy

$$
\varphi(x)= \begin{cases}0 & \text { for } 0 \leqslant x \leqslant 1 / q \\ 1 & \text { for } x=1\end{cases}
$$

Similar to (i) we take an entire function $g(x)$ and set $f(x):=g(x)+\varphi(x)$. Since $B_{n}(g, q ; x) \rightrightarrows g(x)$ and $B_{n}(\varphi, q ; x)=p_{n n}(q ; x)=x^{n}$, we are done.
(iii) Consider $0 \not \equiv \varphi(x) \in C^{\infty}[0,1]$ such that $\varphi(x)=0$ for $x \in[0,1 / q] \cup\{1\}$. Obviously, $B_{n}(\varphi, q ; x) \equiv 0$ for all $n=1,2, \ldots$. For any entire function $g(x)$ we set as above $f(x):=g(x)+\varphi(x)$ and get $B_{n}(f, q ; x) \rightrightarrows g(x) \neq f(x)$.

Proof of Theorem 3. Using (6) and (7) we write

$$
B_{n}(f, q ; z)=\sum_{k=0}^{n}\left(1-\frac{1}{[n]_{q}}\right) \cdots\left(1-\frac{[k-1]_{q}}{[n]_{q}}\right) f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[k]_{q}}{[n]_{q}}\right] z^{k}
$$

Note that for $j<n$,

$$
\lim _{q \rightarrow+\infty} \frac{[j]_{q}}{[n]_{q}}=0
$$

so all factors in the parentheses tend to 1 as $q \rightarrow+\infty$.
Now, since $f \in C^{n-1}[0,1]$, for $k \leqslant n-1$ we get

$$
\lim _{q \rightarrow+\infty} f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[k]_{q}}{[n]_{q}}\right]=\frac{f^{(k)}(0)}{k!} .
$$

This allows us to evaluate the limit of the coefficients of $1, z, \ldots, z^{n-1}$ in $B_{n}(f, q ; x)$ as $q \rightarrow+\infty$. To find the limit of the coefficient of z^{n} we must evaluate

$$
\lim _{q \rightarrow+\infty} f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[n-1]_{q}}{[n]_{q}}, 1\right] .
$$

We will use the following lemma.
Lemma 2. Let $f \in C^{m}[0,1]$ and $0 \leqslant x_{0}<x_{1}<\cdots<x_{m}<1$. Then

$$
\lim _{x_{m} \rightarrow 0} f\left[x_{0}, x_{1}, \ldots, x_{m}, 1\right]=f(1)-\sum_{k=0}^{m} \frac{f^{(k)}(0)}{k!}
$$

Proof. We prove the lemma by induction on m.
For $m=0$, we have

$$
f\left[x_{0}, 1\right]=\frac{f(1)-f\left(x_{0}\right)}{1-x_{0}}
$$

and, clearly,

$$
\lim _{x_{0} \rightarrow 0} f\left[x_{0}, 1\right]=f(1)-f(0) .
$$

Assume that the statement is true if the number of points x_{i} does not exceed m. Consider the divided difference with $(m+1)$ points x_{i} :

$$
f\left[x_{0}, x_{1}, \ldots, x_{m}, 1\right]=\frac{f\left[x_{1}, \ldots, x_{m}, 1\right]-f\left[x_{0}, x_{1}, \ldots, x_{m}\right]}{1-x_{m}}
$$

By the induction assumption we have

$$
\lim _{x_{m} \rightarrow 0} f\left[x_{1}, \ldots, x_{m}, 1\right]=f(1)-\sum_{k=0}^{m-1} \frac{f^{(k)}(0)}{k!}
$$

On the other hand, since $f \in C^{m}[0,1]$, we get

$$
\lim _{x_{m} \rightarrow 0} f\left[x_{0}, x_{1}, \ldots, x_{m}\right]=\frac{f^{(m)}(0)}{m!}
$$

Thus,

$$
\lim _{x_{m} \rightarrow 0} f\left[x_{0}, x_{1}, \ldots, x_{m}, 1\right]=f(1)-\sum_{k=0}^{m} \frac{f^{(k)}(0)}{k!}
$$

Applying Lemma 2 we obtain

$$
\lim _{q \rightarrow+\infty} f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[n-1]_{q}}{[n]_{q}}, 1\right]=f(1)-\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} .
$$

Finally, we get for $f \in C^{n-1}[0,1]$,

$$
\lim _{q \rightarrow+\infty} B_{n}(f, q ; z)=\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} z^{k}+z^{n}\left\{f(1)-\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!}\right\} .
$$

5. Rate of convergence of q-Bernstein polynomials in the case $q>1$

The following is a Voronovskaya-type theorem for monomials. It shows that in the case $q>1$ the polynomials $B_{n}\left(t^{m}, q ; z\right)$ converge to z^{m} essentially faster than the classical ones.

Theorem 4. Let $q \geqslant 1$ be fixed. Then for any $z \in \mathbf{C}$,

$$
\lim _{n \rightarrow \infty}[n]_{q}\left\{B_{n}\left(t^{m}, q ; z\right)-z^{m}\right\}=\left(1+[2]_{q}+\cdots+[m-1]_{q}\right)\left(z^{m-1}-z^{m}\right)
$$

(From here on an empty sum is taken to be equal 0.)
The following theorem provides a uniform estimate of the difference between z^{m} and its q-Bernstein polynomial in a circle of radius $R>1$.

Theorem 5. Let $q \geqslant 1$ be fixed. Then for $R>1$ and all $m=1,2, \ldots ; n=1,2, \ldots$ we have

$$
\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| \leqslant 2 \frac{(m-1)[m-1]_{q}}{[n]_{q}} R^{m} \quad \text { for }|z| \leqslant R .
$$

Corollary 5. Let $q \geqslant 1$ be fixed. Then for any compact set $K \subset \mathbf{C}$,

$$
B_{n}\left(t^{m}, q ; z\right) \rightrightarrows z^{m} \quad \text { for } z \in K \text { as } n \rightarrow \infty,
$$

and

$$
\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| \leqslant \frac{C_{m, q, K}}{[n]_{q}} \quad \text { for all } n=1,2, \ldots
$$

If we consider q-Bernstein polynomials of z^{m} in the closed unit disk $\{z:|z| \leqslant 1\}$, we can get a more particular estimate.

Corollary 6. For all $m=0,1,2, \ldots, n=1,2, \ldots$, we have

$$
\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| \leqslant 2 \frac{m q^{m}}{[n]_{q}(q-1)} \quad \text { for }|z| \leqslant 1
$$

Using the latter estimate we obtain the following statement, which shows that for a wide class of analytic functions their q-Bernstein polynomials provide exponentially fast approximation in the closed unit disk, and, in particular, on the interval $[0,1]$.

Theorem 6. Let $q \geqslant 1$ be fixed. If a function $f(z)$ is analytic in a disk $D_{R}:=$ $\{z:|z|<R\}, R>q$, then

$$
\left|B_{n}(f, q ; z)-f(z)\right| \leqslant \frac{C_{f, q}}{[n]_{q}} \quad \text { for }|z| \leqslant 1 \text { and all } n=1,2 \ldots
$$

That is, if a function is analytic in a disk of radius $R>q$, then its q-Bernstein polynomials form an approximating sequence on $[0,1]$ with the rate of convergence of order q^{-n}. Therefore, in the case $q>1$ approximation of an analytic function with q-Bernstein polynomials is essentially faster than with the classical ones.

It turns out that in the case $q \geqslant 1, q$-Bernstein polynomials of an analytic function form an approximating sequence in the closed unit disk $\{z:|z| \leqslant 1\}$ even if we do not keep the value of q fixed.

Theorem 7. If a function $f(z)$ is analytic in a disk $D_{R}, R>1$, then for all $q \geqslant 1$ the following estimate holds uniformly with respect to q :

$$
\left|B_{n}(f, q ; z)-f(z)\right| \leqslant \frac{C_{f}}{n} \quad \text { for }|z| \leqslant 1 \text { and all } n=1,2 \ldots
$$

The following corollary can be regarded as an analogue for $q_{n} \geqslant 1$ of Phillips' convergence theorem [15, Theorem 2].

Corollary 7. If a function $f(z)$ is analytic in a disk $D_{R}, R>1$, then for any sequence $\left\{q_{n}\right\}, q_{n} \geqslant 1$ we have

$$
B_{n}\left(f, q_{n}, z\right) \rightrightarrows f(z) \quad \text { for }|z| \leqslant 1 \text { as } n \rightarrow \infty
$$

6. Proofs of Theorems 4-7

The following lemma is needed for the sequel.

Lemma 3. Let $f=t^{m}, m \geqslant 1$. Then

$$
\begin{equation*}
B_{n}\left(t^{m}, q ; z\right)=\alpha_{1} z+\cdots+\alpha_{j} z^{j}, \quad j=\min (m, n) \tag{20}
\end{equation*}
$$

where
(i) all $\alpha_{i} \geqslant 0(i=1, \ldots, j)$.
(ii) $\alpha_{1}+\cdots+\alpha_{j}=1$.

Besides, for $n \geqslant m$ we have
(iii)

$$
\alpha_{i} \leqslant \frac{C_{i, m}}{[n]_{q}^{m-i}}, \quad i=1, \ldots, m
$$

(iv)

$$
\alpha_{m}=\lambda_{m, q}^{(n)}, \quad \alpha_{m-1}=\lambda_{m-1, q}^{(n)} \frac{1+[2]_{q}+\cdots+[m-1]_{q}}{[n]_{q}} .
$$

Proof. It was already noticed in the Preliminaries that $B_{n}\left(t^{m}, q ; z\right)$ is a polynomial of degree $\min (m, n)$. The end-point interpolation property (3) implies that for $m \geqslant 1$, the free term of $B_{n}\left(t^{m}, q ; z\right)$ equals 0 . Therefore, (20) is justified.
(i) Representation (6) of q-Bernstein polynomials gives the following values of the coefficients in (20):

$$
\begin{equation*}
\alpha_{i}=\lambda_{i, q}^{(n)} f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[i]_{q}}{[n]_{q}}\right], \quad i=1, \ldots, m, \tag{21}
\end{equation*}
$$

where $0 \leqslant \lambda_{i, q}^{(n)} \leqslant 1$ are given by (7).
Since for $f=t^{m}$:

$$
f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[i]_{q}}{[n]_{q}}\right] \geqslant 0,
$$

the statement is proved.
(ii) This follows readily from (3), if we put $x=1$ in (20).
(iii) Using (21) and (9), we get

$$
\alpha_{i} \leqslant f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[i]_{q}}{[n]_{q}}\right]=\frac{f^{(i)}\left(\xi_{i}\right)}{i!}, \quad \text { where } \xi_{i} \in\left(0, \frac{[i]_{q}}{[n]_{q}}\right) .
$$

Hence

$$
\alpha_{i} \leqslant\binom{ m}{i} \xi_{i}^{m-i} \leqslant\binom{ m}{i}\left(\frac{[i]_{q}}{[n]_{q}}\right)^{m-i}=: \frac{C_{m, i}}{[n]_{q}^{m-i}},
$$

as required.
(iv) Obviously,

$$
f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[m]_{q}}{[n]_{q}}\right]=1
$$

and, therefore $\alpha_{m}=\lambda_{m, q}^{(n)}$.
To calculate

$$
f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[m-1]_{q}}{[n]_{q}}\right],
$$

we use the representation (cf. [8, Chapter II, Section 2.7]):

$$
f\left[0, \frac{1}{[n]_{q}}, \cdots, \frac{[k]_{q}}{[n]_{q}}\right]=\frac{1}{2 \pi i} \int_{L} \frac{f(\zeta) d \zeta}{\zeta\left(\zeta-\frac{1}{[n]_{q}}\right) \cdots\left(\zeta-\frac{[k]_{q}}{[n]_{q}}\right)}
$$

where L is a contour around $[0,1]$. Hence for $f(\zeta)=\zeta^{m}$ we get

$$
f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[m-1]_{q}}{[n]_{q}}\right]=\frac{1}{2 \pi i} \int_{L} \frac{\zeta^{m-1} d \zeta}{\left(\zeta-\frac{1}{[n]_{q}}\right) \ldots\left(\zeta-\frac{[m-1]_{q}}{[n]_{q}}\right)}
$$

Direct calculation of the integral implies

$$
f\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[m-1]_{q}}{[n]_{q}}\right]=\frac{1+[2]_{q}+\cdots+[m-1]_{q}}{[n]_{q}}
$$

and (iv) is proved.
Proof of Theorem 4. For $m=0,1$ there is nothing to prove, because by (11) q-Bernstein polynomials leave invariant linear functions.

For $m \geqslant 2$ using (iii) and (iv) of Lemma 3, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & {[n]_{q}\left\{B_{n}\left(t^{m}, q ; z\right)-z^{m}\right\} } \\
= & \lim _{n \rightarrow \infty}[n]_{q}\left\{\alpha_{m} z^{m}+\alpha_{m-1} z^{m-1}-z^{m}\right\} \\
= & \lim _{n \rightarrow \infty}[n]_{q}\left\{\left(\lambda_{m, q}^{(n)}-1\right) z^{m}+\frac{1+[2]_{q}+\cdots+[m-1]_{q}}{[n]_{q}} z^{m-1}\right\} \\
= & \left(1+[2]_{q}+\cdots+[m-1]_{q}\right) z^{m-1} \\
& +z^{m} \lim _{n \rightarrow \infty}[n]_{q}\left\{\left(1-\frac{1}{[n]_{q}}\right) \cdots\left(1-\frac{[m-1]_{q}}{[n]_{q}}\right)-1\right\} \\
= & \left(1+[2]_{q}+\cdots+[m-1]_{q}\right)\left(z^{m-1}-z^{m}\right) . \quad \square
\end{aligned}
$$

Proof of Theorem 5. For $m=0,1$ the statement is obvious.
First we consider the case $n \geqslant m \geqslant 2$. Applying Lemma 3, we get for $|z| \leqslant R, R>1$:

$$
\begin{align*}
\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| & =\left|\sum_{k=1}^{m-1} \alpha_{k} z^{k}+\left(1-\lambda_{m, q}^{(n)}\right) z^{m}\right| \\
& \leqslant\left(\sum_{k=1}^{m-1} \alpha_{k}+\left(1-\lambda_{m, q}^{(n)}\right)\right) R^{m}=2\left(1-\lambda_{m, q}^{(n)}\right) R^{m} \tag{22}
\end{align*}
$$

Now, by (7)

$$
\begin{aligned}
1-\lambda_{m, q}^{(n)} & =1-\left(1-\frac{1}{[n]_{q}}\right) \cdots\left(1-\frac{[m-1]_{q}}{[n]_{q}}\right) \\
& \leqslant 1-\left(1-\frac{[m-1]_{q}}{[n]_{q}}\right)^{m-1} \leqslant(m-1) \frac{[m-1]_{q}}{[n]_{q}} .
\end{aligned}
$$

Using (22), we get that for $n \geqslant m$,

$$
\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| \leqslant 2(m-1) \frac{[m-1]_{q}}{[n]_{q}} R^{m} .
$$

To complete the proof, we note that statements (i) and (ii) of Lemma 3 yield that $\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| \leqslant 2 R^{m}$. Therefore, the estimate is also true for $n<m$.

Proof of Theorem 6. Let $f(z)=\sum_{m=0}^{\infty} a_{m} z^{m}$ be a function analytic in a disk D_{R}, $R>q$. Evidently,

$$
B_{n}(f, q ; z)=\sum_{m=0}^{\infty} a_{m} B_{n}\left(t^{m}, q ; z\right) \quad \text { for }|z| \leqslant R
$$

Hence applying Corollary 6 of Theorem 5, we have for $|z| \leqslant 1$:

$$
\left|B_{n}(f, q ; z)-f(z)\right| \leqslant \sum_{m=0}^{\infty}\left|a_{m}\right|\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| \leqslant \sum_{m=0}^{\infty} \frac{2\left|a_{m}\right| m q^{m}}{[n]_{q}(q-1)}=: \frac{C_{f, q}}{[n]_{q}},
$$

because $\sum_{m=0}^{\infty}\left|a_{m}\right| m q^{m}<\infty$.
Proof of Theorem 7. First, we prove that for all $q \geqslant 1$ and all $m=0,1, \ldots n=1,2, \ldots$ the following estimate holds uniformly with respect to q :

$$
\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| \leqslant \frac{2 m^{2}}{n} \quad \text { for }|z| \leqslant 1
$$

If $n<m$, the inequality is true, because $\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| \leqslant 2$ for $|z| \leqslant 1$. For $n \geqslant m$, we have by (22)

$$
\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| \leqslant 2\left(1-\lambda_{m, q}^{(n)}\right) \quad \text { for }|z| \leqslant 1 .
$$

If $q \geqslant 1$, then

$$
\frac{[j]_{q}}{[n]_{q}} \leqslant \frac{j}{n} \text { for } j=0,1, \ldots, n
$$

and hence

$$
\lambda_{m, q}^{(n)}=\left(1-\frac{1}{[n]_{q}}\right) \cdots\left(1-\frac{[m-1]_{q}}{[n]_{q}}\right) \geqslant\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right)=\lambda_{m, 1}^{(n)}
$$

Therefore, for all $q \geqslant 1$ we get

$$
\begin{aligned}
\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| & \leqslant 2\left(1-\lambda_{m, 1}^{(n)}\right) \\
& \leqslant 2\left[1-\left(1-\frac{m-1}{n}\right)^{m-1}\right] \leqslant 2 \frac{(m-1)^{2}}{n} \leqslant 2 \frac{m^{2}}{n} \quad \text { for }|z| \leqslant 1
\end{aligned}
$$

Now, let $f(z)=\sum_{m=0}^{\infty} a_{m} z^{m}$ be a function analytic in a disk $D_{R}, R>1$. Then for any $q \geqslant 1$,

$$
\left|B_{n}(f, q ; z)-f(z)\right| \leqslant \sum_{m=0}^{\infty}\left|a_{m}\right|\left|B_{n}\left(t^{m}, q ; z\right)-z^{m}\right| \leqslant \sum_{m=0}^{\infty} 2 \frac{\left|a_{m}\right| m^{2}}{n}=: \frac{C_{f}}{n}
$$

since $\sum_{m=0}^{\infty}\left|a_{m}\right| m^{2}<\infty$. Clearly, C_{f} does not depend on q.
Remark. The statement remains true if $f(z)=\sum_{m=0}^{\infty} a_{m} z^{m}$ is a function analytic in the open unit disk and $\sum_{m=0}^{\infty}\left|a_{m}\right| m^{2}<\infty$.

7. Iterates of q-Bernstein polynomials

We recall that the q-Bernstein operator $B_{n, q}: C[0,1] \rightarrow \mathscr{P}_{n}$ is defined by

$$
B_{n, q}: f \mapsto B_{n}(f, q ; x)=\sum_{k=0}^{n} f\left(\frac{[k]_{q}}{[n]_{q}}\right) p_{n k}(q ; x)
$$

where $p_{n k}(q ; x)$ are given by (12).
For $q \in(0,1)$ equality (16) defines the limit operator $B_{\infty, q}$ on $C[0,1]$ as

$$
B_{\infty, q}: f \mapsto B_{\infty}(f, q ; x)= \begin{cases}\sum_{k=0}^{\infty} f\left(1-q^{k}\right) p_{\infty k}(q ; x) & \text { if } x \in[0,1) \tag{23}\\ f(1) & \text { if } x=1,\end{cases}
$$

where entire functions $p_{\infty, k}$ are given by (14).
It can be readily seen that for $q \in(0,1)$, both polynomials $p_{n k}(q ; x)$ and entire functions $p_{\infty k}(q ; x)$ are non-negative on the interval $[0,1]$. Therefore, we get from (13) and (15) that

$$
\begin{equation*}
\left\|B_{n, q}\right\|=\left\|B_{\infty, q}\right\|=1 \quad \text { for } q \in(0,1) \tag{24}
\end{equation*}
$$

By L we denote the operator of linear interpolation at 0 and 1, i.e.,

$$
L(f ; x):=(1-x) f(0)+x f(1) .
$$

Theorem 8. Let $q \in(0,1)$ and $\left\{j_{n}\right\}$ be a sequence of positive integers such that $j_{n} \rightarrow \infty$. Then for any $f \in C[0,1]$,

$$
B_{n}^{j_{n}}(f, q ; x) \rightrightarrows L(f ; x) \quad \text { for } x \in[0,1] \text { as } n \rightarrow \infty
$$

The following theorem describes the behavior of iterates of the limit operator $B_{\infty, q}$.

Theorem 9. Let $q \in(0,1)$, and the operator $B_{\infty, q}$ be defined by (23). If $\left\{j_{n}\right\}$ is a sequence of positive integers such that $j_{n} \rightarrow \infty$, then for any $f \in C[0,1]$,

$$
B_{\infty}^{j_{n}}(f, q ; x) \rightrightarrows L(f ; x) \quad \text { for } x \in[0,1] \text { as } n \rightarrow \infty
$$

The statement below (proved in [5]) follows from Theorem 9 immediately.
Corollary 8. Let $q \in(0,1)$. Then $B_{\infty, q}(f)=f$ if and only if $f=L(f)$, i.e. f is a linear function.

For $q \in(1, \infty)$ we restrict ourselves to the case when f is a polynomial. This is because in contrast to the case $q \in(0,1]$, the sequence $\left\{B_{n}(f, q ; x)\right\}$ may be divergent even for an infinitely differentiable function f (cf. Theorem 2.) However, behavior of the operators $B_{n, q}$ for $q \in(1, \infty)$ on the space of polynomials $\mathscr{P}=\bigcup_{m=0}^{\infty} \mathscr{P}_{m}$ is rather
similar to the classical case. In particular, for any $p \in \mathscr{P}$ the sequence $\left\{B_{n}(p, q ; x)\right\}$ converges to p uniformly on $[0,1]$. Behavior of iterates $B_{n, q}^{j_{n}}$ on \mathscr{P} resembles the situation with $q=1$. More precisely, the following statement holds.

Theorem 10. Let $q \in(1, \infty)$ and $\left\{j_{n}\right\}$ be a sequence of positive integers such that $j_{n} /[n]_{q} \rightarrow t$ as $n \rightarrow \infty$. Then for any polynomial p and any $0 \leqslant t \leqslant \infty$ the sequence $\left\{B_{n}^{j_{n}}(p, q ; x)\right\}$ converges uniformly on $[0,1]$. In particular, for $t=0$,

$$
B_{n}^{j_{n}}(p, q ; x) \rightrightarrows p(x) \quad \text { for } x \in[0,1]
$$

and for $t=\infty$,

$$
B_{n}^{j_{n}}(p, q ; x) \rightrightarrows L(p ; x) \quad \text { for } x \in[0,1]
$$

We omit the proof of Theorem 10 since it repeats verbatim the reasoning of [3], where the classical case $q=1$ was considered.

8. Some auxiliary results

Lemma 4. For all $q>0$ the following identity holds:

$$
\begin{gather*}
B_{n}\left(t^{m}, q ; x\right)=\frac{x}{[n]_{q}^{m-1}} \sum_{j=0}^{m-1}\binom{m-1}{j}\left([n]_{q}-1\right)^{j} B_{n-1}\left(t^{j}, q ; x\right) \\
n=2,3, \ldots ; m=1,2, \ldots \tag{25}
\end{gather*}
$$

Proof. Let $p_{n, k}(q ; x)$ be defined by (12). Then

$$
\begin{aligned}
B_{n}\left(t^{m}, q ; x\right) & =\sum_{k=0}^{n}\left(\frac{[k]_{q}}{[n]_{q}}\right)^{m} p_{n k}(q ; x) \\
& =\sum_{k=1}^{n}\left(\frac{[k]_{q}}{[n]_{q}}\right)^{m-1}\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]_{q} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \\
& =\frac{x}{[n]_{q}^{m-1}} \sum_{k=0}^{n-1}[k+1]_{q}^{m-1} p_{n-1, k}(q ; x) \\
& =\frac{x}{[n]_{q}^{m-1}} \sum_{k=0}^{n-1}\left(1+q[k]_{q}\right)^{m-1} p_{n-1, k}(q ; x) \\
& =\frac{x}{[n]_{q}^{m-1}} \sum_{j=0}^{m-1}\binom{m-1}{j}\left(q[n-1]_{q}\right)^{j}\left(\sum_{k=0}^{n-1}\left(\frac{[k]_{q}}{[n-1]_{q}}\right)^{j} p_{n-1, k}(q ; x)\right) \\
& =\frac{x}{[n]_{q}^{m-1}} \sum_{j=0}^{m-1}\binom{m-1}{j}\left([n]_{q}-1\right)^{j} B_{n-1}\left(t^{j}, q ; x\right) .
\end{aligned}
$$

Lemma 5. For all $q>0$ the operator $B_{n, q}$ has $(n+1)$ linearly independent monic eigenvectors $p_{m}^{(n)}(x), \operatorname{deg} p_{m}^{(n)}(x)=m,(m=0,1, \ldots, n)$, corresponding to the eigenvalues

$$
\begin{align*}
& \lambda_{0, q}^{(n)}=\lambda_{1, q}^{(n)}=1 \\
& \lambda_{m, q}^{(n)}=\left(1-\frac{[1]_{q}}{[n]_{q}}\right)\left(1-\frac{[2]_{q}}{[n]_{q}}\right) \cdots\left(1-\frac{[m-1]_{q}}{[n]_{q}}\right), \quad \text { for } m=2, \ldots, n . \tag{26}
\end{align*}
$$

Remark. For $q=1$, (26) coincides with formula (2.5) in [3].
Proof. For $m=0,1$ the statement is obvious due to (11). For $n \geqslant m \geqslant 2$, using Lemma 3 we write

$$
\begin{equation*}
B_{n}\left(t^{m}, q ; x\right)=\lambda_{m, q}^{(n)} x^{m}+P_{m-1}^{(n)}(x), \tag{27}
\end{equation*}
$$

where $P_{m-1}^{(n)}(x) \in \mathscr{P}_{m-1}$ and $\lambda_{m, q}^{(n)}$ are given by (26).
To find an eigenvector $p_{m}^{(n)} \in \mathscr{P}_{m}$ of the operator $B_{n, q}$, we write $p_{m}^{(n)}=x^{m}+$ $a_{m-1} x^{m-1}+\cdots+a_{1} x$ and solve a linear system in unknowns a_{1}, \ldots, a_{m-1} :

$$
B_{n, q}\left(x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x\right)=\lambda_{m, q}^{(n)}\left(x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x\right)
$$

After we apply $B_{n, q}$ in the left-hand side and equate the coefficients of $x^{s}(s=$ $1, \ldots m-1)$, we get a triangular system whose determinant equals

$$
\left(\lambda_{m-1, q}^{(n)}-\lambda_{m, q}^{(n)}\right)\left(\lambda_{m-2, q}^{(n)}-\lambda_{m, q}^{(n)}\right) \ldots\left(\lambda_{1, q}^{(n)}-\lambda_{m, q}^{(n)}\right) \neq 0
$$

Hence there exists a unique monic polynomial of degree $2 \leqslant m \leqslant n$ which is an eigenvector of $B_{n, q}$ with the eigenvalue $\lambda_{m, q}^{(n)}$.

Corollary 9. For $2 \leqslant m \leqslant n$, the operator $\lambda_{m, q}^{(n)} I-B_{n, q}$, where I is the identity operator, is invertible on \mathscr{P}_{m-1}.

Lemma 6. The following equality holds:

$$
\lim _{n \rightarrow \infty} \lambda_{m, q}^{(n)}= \begin{cases}q^{\frac{m(m-1)}{2}}(m=0,1,2, \ldots) & \text { if } q \in(0,1) \\ 1 & \text { if } q \in[1, \infty)\end{cases}
$$

Proof. The statement follows from formula (26) after we notice that

$$
\lim _{n \rightarrow \infty}\left(1-\frac{[j]_{q}}{[n]_{q}}\right)= \begin{cases}q^{j}(j=0,1,2, \ldots) & \text { if } q \in(0,1) \\ 1 & \text { if } q \in[1, \infty)\end{cases}
$$

Lemma 7. Let $q \in(0,1)$. Then for every $m=0,1,2 \ldots$ the operator $B_{\infty, q}$ has an eigenvector $p_{m}(x)$ which is a monic polynomial of degree m, corresponding to the eigenvalue $\lambda_{m, q}=q^{m(m-1) / 2}$.

Proof. For $m=0,1$ the statement follows immediately from (17).
Taking the limit as $n \rightarrow \infty$ in (25) and noting that for $q \in(0,1)$ one has

$$
\frac{\left([n]_{q}-1\right)^{j}}{[n]_{q}^{m-1}} \rightarrow q^{j}(1-q)^{m-j-1},
$$

we get

$$
B_{\infty}\left(t^{m}, q ; x\right)=x \sum_{j=0}^{m-1}\binom{m-1}{j} q^{j}(1-q)^{m-j-1} B_{\infty}\left(t^{j}, q, x\right)
$$

Hence the coefficient $\lambda_{m, q}$ of x^{m} in $B_{\infty}\left(t^{m}, q ; x\right)$ equals $q^{m-1} \lambda_{m-1, q}$, and recursively,

$$
\lambda_{m, q}=q^{m-1} q^{m-2} \ldots q \lambda_{1 q}=q^{m(m-1) / 2}
$$

We have shown that

$$
B_{\infty}\left(t^{m}, q ; x\right)=\lambda_{m, q} x^{m}+Q_{m-1}, \quad Q_{m-1} \in \mathscr{P}_{m-1}
$$

The statement now follows from considering the equations

$$
B_{\infty, q}\left(p_{m}(x)\right)=\lambda_{m, q} p_{m}(x), \quad m=2,3, \ldots
$$

Corollary 10. For $m \geqslant 2$, the operator $\lambda_{m, q} I-B_{\infty, q}$ is invertible on \mathscr{P}_{m-1}.

9. Proofs of Theorems 8 and 9

In this section \rightrightarrows means uniform convergence on $[0,1]$.
Proof of Theorem 8. Because of (3) it suffices to prove that $B_{n, q}^{j_{n}}(f) \rightrightarrows a x+b$ for some a and b as $n \rightarrow \infty$.
(1) First we consider the case $f=x^{m}$.

We will use induction on m. For $m=0,1$ the statement is obvious due to (11).
Assume that $B_{n, q}^{j_{n}}\left(x^{t}\right) \rightrightarrows \varphi_{t} \in \mathscr{P}_{1}$ for $t=0,1, \ldots, m-1$. Consider

$$
\begin{equation*}
B_{n, q}\left(x^{m}\right)=\lambda_{m, q}^{(n)} x^{m}+P_{m-1}^{(n)} \tag{28}
\end{equation*}
$$

where $\lambda_{m, q}^{(n)}$ is given by (26), and $P_{m-1}^{(n)} \in \mathscr{P}_{m-1}$. Then

$$
B_{n, q}^{j_{n}}\left(x^{m}\right)=\left(\lambda_{m, q}^{(n)}\right)^{j_{n}} x^{m}+\left[\left(\lambda_{m, q}^{(n)}\right)^{j_{n}-1} I+\left(\lambda_{m, q}^{(n)}\right)^{j_{n}-2} B_{n, q}+\cdots+B_{n, q}^{j_{n}-1}\right]\left(P_{m-1}^{(n)}\right),
$$

where I denotes the identity operator. It follows from Lemma 6 that

$$
\left(\lambda_{m, q}^{(n)}\right)^{j_{n}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

The expression in the brackets is a linear operator on the space \mathscr{P}_{m-1}.
Consider the sequence of polynomials in \mathscr{P}_{m-1},

$$
\begin{equation*}
y_{m-1}^{(n)}:=\left[\left(\lambda_{m, q}^{(n)}\right)^{j_{n}-1} I+\left(\lambda_{m, q}^{(n)}\right)^{j_{n}-2} B_{n, q}+\cdots+B_{n, q}^{j_{n}-1}\right]\left(P_{m-1}^{(n)}\right) . \tag{29}
\end{equation*}
$$

Then

$$
\left(\lambda_{m, q}^{(n)} I-B_{n, q}\right) y_{m-1}^{(n)}=\left(\lambda_{m, q}^{(n)}\right)^{j_{n}} P_{m-1}^{(n)}-B_{n, q}^{j_{n}} P_{m-1}^{(n)}
$$

It follows from (24) and (28) that $\left\|P_{m-1}^{(n)}\right\| \leqslant 2$. Since $\left(\lambda_{m, q}^{(n)}\right)^{j_{n}} \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\left(\lambda_{m, q}^{(n)}\right)^{j_{n}} P_{m-1}^{(n)} \rightrightarrows 0 \quad \text { as } n \rightarrow \infty
$$

It can be readily seen from (28) and Lemma 6 that

$$
P_{m-1}^{(n)}(x) \rightrightarrows B_{\infty, q}\left(x^{m}\right)-q^{m(m-1) / 2} x^{m}=: Q_{m-1}(x) \in \mathscr{P}_{m-1} \quad \text { as } n \rightarrow \infty,
$$

i.e.

$$
P_{m-1}^{(n)}(x)=Q_{m-1}(x)+\delta_{n}(x)
$$

where $Q_{m-1} \in \mathscr{P}_{m-1}$, and $\delta_{n}(x) \rightrightarrows 0$ as $n \rightarrow \infty$.
Thus,

$$
B_{n, q}^{j_{n}}\left(P_{m-1}^{(n)}\right)=B_{n, q}^{j_{n}}\left(Q_{m-1}\right)+B_{n, q}^{j_{n}}\left(\delta_{n}\right),
$$

where $\left\|B_{n, q}^{j_{n}}\left(\delta_{n}\right)\right\| \leqslant\left\|\delta_{n}\right\|$, because of (24). This means that $B_{n, q}^{j_{n}}\left(\delta_{n}\right) \rightrightarrows 0$ as $n \rightarrow \infty$.
By the induction assumption

$$
B_{n, q}^{j_{n}}\left(Q_{m-1}\right) \rightrightarrows c x+d \in \mathscr{P}_{1} \quad \text { as } n \rightarrow \infty
$$

Therefore,

$$
\left(\lambda_{m, q}^{(n)} I-B_{n, q}\right) y_{m-1}^{(n)} \rightrightarrows c x+d \quad \text { as } n \rightarrow \infty
$$

or

$$
\left(\lambda_{m, q}^{(n)} I-B_{n, q}\right) y_{m-1}^{(n)}=c x+d+\omega_{n}(x),
$$

where $\omega_{n}(x) \rightrightarrows 0$ as $n \rightarrow \infty$.
By Corollary 8 the operators $\lambda_{m, q}^{(n)} I-B_{n, q}$ are invertible on \mathscr{P}_{m-1} for $n \geqslant m$ and

$$
\lim _{n \rightarrow \infty}\left(\lambda_{m, q}^{(n)} I-B_{n, q}\right)=q^{\frac{m(m-1)}{2}} I-B_{\infty, q}=: A_{\infty, q},
$$

where by Corollary $10 A_{\infty, q}$ is also invertible on \mathscr{P}_{m-1}. Hence

$$
\left(\lambda_{m, q}^{(n)} I-B_{n, q}\right)^{-1} \rightarrow A_{\infty, q}^{-1} \quad \text { as } n \rightarrow \infty
$$

and it follows that

$$
\left\|\left(\lambda_{m, q}^{(n)} I-B_{n, q}\right)^{-1}\right\| \leqslant M \quad \text { for some } M>0
$$

Therefore,

$$
y_{m-1}^{(n)}=\left(\lambda_{m, q}^{(n)} I-B_{n, q}\right)^{-1}(c x+d)+\left(\lambda_{m, q}^{(n)} I-B_{n, q}\right)^{-1}\left(\omega_{n}\right) .
$$

Since $\left\|\left(\lambda_{m, q}^{(n)} I-B_{n, q}\right)^{-1}\left(\omega_{n}\right)\right\| \leqslant M\left\|\omega_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, and $\left(\lambda_{m, q}^{(n)} I-B_{n, q}\right)^{-1} \rightarrow A_{\infty, q}$ as $n \rightarrow \infty$, we conclude that

$$
y_{m-1}^{(n)} \rightrightarrows A_{\infty, q}^{-1}(c x+d):=a x+b \in \mathscr{P}_{1}
$$

Thus, $B_{n, q}^{j_{n}}\left(x^{m}\right) \rightrightarrows a x+b$.
The induction is completed and it follows that for any polynomial p,

$$
B_{n}^{j_{n}}(p, q ; x) \rightrightarrows L(p ; x) \quad \text { for } x \in[0,1] \text { as } n \rightarrow \infty
$$

(2) Let $f \in C[0,1]$, and let $\varepsilon>0$ be given. Then $f(x)=p(x)+\delta(x)$, where $p \in \mathscr{P}$, and $\|\delta(x)\|<\varepsilon$. We have

$$
B_{n, q}^{j_{n}}(f)=B_{n, q}^{j_{n}}(p)+B_{n, q}^{j_{n}}(\delta) .
$$

Since $B_{n, q}^{j_{n}}(p) \rightrightarrows L(p)$, there exists $n_{0} \in \mathbf{N}$ such that $\left\|B_{n}^{j_{n}}(p)-L(p)\right\|<\varepsilon$ for all $n>n_{0}$. Obviously, $\|L(\delta)\| \leqslant\|\delta\|<\varepsilon$, and finally we obtain

$$
\left\|B_{n, q}^{j_{n}}(f)-L(f)\right\| \leqslant\left\|B_{n, q}^{j_{n}}(p)-L(p)\right\|+\left\|B_{n}^{j_{n}}(\delta)\right\|+\|\delta\|<3 \varepsilon \quad \text { for all } n>n_{0}
$$

Thus, $B_{n}^{j_{n}}(f, q ; x) \rightrightarrows L(f ; x)$ for $x \in[0,1]$ as $n \rightarrow \infty$.
Proof of Theorem 9. (1) First we prove the statement in the case $f \in \mathscr{P}_{m}$. For $f \in \mathscr{P}_{m}$ by Lemma 7 we have

$$
f=\alpha_{0} p_{0}+\alpha_{1} p_{1}+\cdots+\alpha_{m} p_{m}
$$

where $p_{0}, p_{1}, \ldots, p_{m}$ are eigenvectors of $B_{\infty, q}$ corresponding to the eigenvalues $\lambda_{0, q}$, $\lambda_{1, q}, \ldots, \lambda_{m, q}$. Obviously,

$$
B_{\infty, q}^{j_{n}}(f)=\alpha_{0} \lambda_{0, q}^{j_{n}} p_{0}+\alpha_{1} \lambda_{1, q}^{j_{n}} p_{1}+\cdots+\alpha_{m} \lambda_{m, q}^{j_{n}} p_{m}
$$

Since $\lambda_{0, q}=\lambda_{1, q}=1, \lambda_{i, q} \in(0,1)$ for $i \geqslant 2$, we obtain

$$
B_{\infty, q}^{j_{n}}(f) \rightrightarrows \alpha_{0} p_{0}+\alpha_{1} p_{1} \in \mathscr{P}_{1} .
$$

Taking into account (3), we derive the statement.
(2) For $f \in C[0,1]$, the statement follows from the density of the set of polynomials in $C[0,1]$ and the fact that $\left\|B_{\infty, q}\right\|=1$ (cf. (24)).

Acknowledgment

The author is grateful to Prof. A. Il'inskii for his thorough reading of the manuscript and valuable comments.

References

[1] G.E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, MA, 1976.
[2] S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités, Comm. Soc. Math. Charkow Sér. 2 t. 13 (1912) 1-2.
[3] S. Cooper, S. Waldron, The eigenstructure of the Bernstein operator, J. Approx. Theory 105 (2000) 133-165.
[4] T.N.T. Goodman, H. Oruç, G.M. Phillips, Convexity and generalized Bernstein polynomials, Proc. Edinburgh Math. Soc. 42 (1) (1999) 179-190.
[5] A. Il'inskii, S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (2002) 100-112.
[6] R.P. Kelisky, T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math. 21 (1967) 511-520.
[7] X. Li, P. Mikusiński, H. Sherwood, M.D. Taylor, On approximation of copulas, in: V. Benes, J. Stepan (Eds.), Distributions with Given Marginals and Moment Problem, Kluwer Academic Publishers, Dordrecht, 1997.
[8] G.G. Lorentz, Bernstein Polynomials, Chelsea, New York, 1986.
[9] A. Lupaş, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, preprint No. 9, 1987.
[10] C. Micchelli, The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory 8 (1973) 1-18.
[11] H. Oruç, G.M. Phillips, A generalization of Bernstein polynomials, Proc. Edinburgh Math. Soc. 42 (2) (1999) 403-413.
[12] H. Oruç, N. Tuncer, On the convergence and iterates of q-Bernstein polynomials, J. Approx. Theory 117 (2002) 301-313.
[13] S. Petrone, Random Bernstein polynomials, Scand. J. Statist. 26 (3) (1999) 373-393.
[14] G.M. Phillips, On generalized Bernstein polynomials, in: D.F. Griffits, G.A. Watson (Eds.), Numerical Analysis: A.R. Mitchell 75th Birthday Volume, World Science, Singapore, 1996, pp. 263-269.
[15] G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997) 511-518.
[16] G.M. Phillips, A de Casteljau algorithm for generalized Bernstein polynomials, BIT 37 (1) (1997) 232-236.
[17] G.M. Phillips, A generalization of the Bernstein polynomials based on the q-integers, ANZIAM J. 42 (2000) 79-86.
[18] E.C. Titchmarsh, Theory of Functions, Oxford University Press, Oxford, 1986.
[19] V.S. Videnskii, Bernstein Polynomials, Leningrad State Pedagocical University, Leningrad, 1990 (Russian).

[^0]: *Fax: + 90-312-586-80-91.
 E-mail address: ostrovskasofiya@yahoo.com.

